ar X iv : m at h / 06 09 48 8 v 3 [ m at h . PR ] 1 F eb 2 00 7 DISTRIBUTIONS OF FUNCTIONALS OF THE TWO PARAMETER POISSON – DIRICHLET PROCESS

نویسندگان

  • Lancelot F. James
  • Antonio Lijoi
  • Igor Prünster
چکیده

The present paper provides exact expressions for the probability distribution of linear functionals of the two–parameter Poisson–Dirichlet process PD(α, θ). Distributional results that follow from the application of an inversion formula for a (generalized) Cauchy– Stieltjes transform are achieved. Moreover, several interesting integral identities are obtained by exploiting a correspondence between the mean functional of a Poisson–Dirichlet process and the mean functional of a suitable Dirichlet process. Finally, some distributional characterizations in terms of mixture representations are illustrated. Our formulae are relevant to occupation time phenomena connected with Brownian motion and more general Bessel processes, as well as to models arising in Bayesian nonparametric statistics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 06 09 48 8 v 1 [ m at h . PR ] 1 8 Se p 20 06 DISTRIBUTIONS OF FUNCTIONALS OF THE TWO PARAMETER POISSON – DIRICHLET PROCESS

The present paper provides exact expressions for the probability distribution of linear functionals of the two–parameter Poisson–Dirichlet process PD(α, θ). Distributional results that follow from the application of an inversion formula for a (generalized) Cauchy– Stieltjes transform are achieved. Moreover, several interesting integral identities are obtained by exploiting a correspondence betw...

متن کامل

ar X iv : m at h / 06 09 48 8 v 2 [ m at h . PR ] 1 9 Se p 20 06 DISTRIBUTIONS OF FUNCTIONALS OF THE TWO PARAMETER POISSON – DIRICHLET PROCESS

The present paper provides exact expressions for the probability distribution of linear functionals of the two–parameter Poisson–Dirichlet process PD(α, θ). Distributional results that follow from the application of an inversion formula for a (generalized) Cauchy– Stieltjes transform are achieved. Moreover, several interesting integral identities are obtained by exploiting a correspondence betw...

متن کامل

ar X iv : 0 70 4 . 09 45 v 1 [ m at h . PR ] 6 A pr 2 00 7 Gibbs fragmentation trees ∗

We study fragmentation trees of Gibbs type. In the binary case, we identify the most general Gibbs type fragmentation tree with Aldous’s beta-splitting model, which has an extended parameter range β > −2 with respect to the Beta(β + 1, β + 1) probability distributions on which it is based. In the multifurcating case, we show that Gibbs fragmentation trees are associated with the two-parameter P...

متن کامل

ar X iv : 0 80 2 . 06 73 v 1 [ m at h . PR ] 5 F eb 2 00 8 FRACTIONAL CAUCHY PROBLEMS ON BOUNDED DOMAINS

Fractional Cauchy problems replace the usual first order time derivative by a fractional derivative. This paper develops classical solutions and stochas-tic analogues for fractional Cauchy problems in a bounded domain D ⊂ R d with Dirichlet boundary conditions. Stochastic solutions are constructed via an inverse stable subordinator whose scaling index corresponds to the order of the fractional ...

متن کامل

ar X iv : m at h / 06 01 33 8 v 2 [ m at h . D S ] 1 3 A pr 2 00 6 HYPERBOLIC OUTER BILLIARDS : A FIRST EXAMPLE

We present the first example of a hyperbolic outer billiard. More precisely we construct a one parameter family of examples which in some sense correspond to the Bunimovich billiards.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006