ar X iv : m at h / 06 09 48 8 v 3 [ m at h . PR ] 1 F eb 2 00 7 DISTRIBUTIONS OF FUNCTIONALS OF THE TWO PARAMETER POISSON – DIRICHLET PROCESS
نویسندگان
چکیده
The present paper provides exact expressions for the probability distribution of linear functionals of the two–parameter Poisson–Dirichlet process PD(α, θ). Distributional results that follow from the application of an inversion formula for a (generalized) Cauchy– Stieltjes transform are achieved. Moreover, several interesting integral identities are obtained by exploiting a correspondence between the mean functional of a Poisson–Dirichlet process and the mean functional of a suitable Dirichlet process. Finally, some distributional characterizations in terms of mixture representations are illustrated. Our formulae are relevant to occupation time phenomena connected with Brownian motion and more general Bessel processes, as well as to models arising in Bayesian nonparametric statistics.
منابع مشابه
ar X iv : m at h / 06 09 48 8 v 1 [ m at h . PR ] 1 8 Se p 20 06 DISTRIBUTIONS OF FUNCTIONALS OF THE TWO PARAMETER POISSON – DIRICHLET PROCESS
The present paper provides exact expressions for the probability distribution of linear functionals of the two–parameter Poisson–Dirichlet process PD(α, θ). Distributional results that follow from the application of an inversion formula for a (generalized) Cauchy– Stieltjes transform are achieved. Moreover, several interesting integral identities are obtained by exploiting a correspondence betw...
متن کاملar X iv : m at h / 06 09 48 8 v 2 [ m at h . PR ] 1 9 Se p 20 06 DISTRIBUTIONS OF FUNCTIONALS OF THE TWO PARAMETER POISSON – DIRICHLET PROCESS
The present paper provides exact expressions for the probability distribution of linear functionals of the two–parameter Poisson–Dirichlet process PD(α, θ). Distributional results that follow from the application of an inversion formula for a (generalized) Cauchy– Stieltjes transform are achieved. Moreover, several interesting integral identities are obtained by exploiting a correspondence betw...
متن کاملar X iv : 0 70 4 . 09 45 v 1 [ m at h . PR ] 6 A pr 2 00 7 Gibbs fragmentation trees ∗
We study fragmentation trees of Gibbs type. In the binary case, we identify the most general Gibbs type fragmentation tree with Aldous’s beta-splitting model, which has an extended parameter range β > −2 with respect to the Beta(β + 1, β + 1) probability distributions on which it is based. In the multifurcating case, we show that Gibbs fragmentation trees are associated with the two-parameter P...
متن کاملar X iv : 0 80 2 . 06 73 v 1 [ m at h . PR ] 5 F eb 2 00 8 FRACTIONAL CAUCHY PROBLEMS ON BOUNDED DOMAINS
Fractional Cauchy problems replace the usual first order time derivative by a fractional derivative. This paper develops classical solutions and stochas-tic analogues for fractional Cauchy problems in a bounded domain D ⊂ R d with Dirichlet boundary conditions. Stochastic solutions are constructed via an inverse stable subordinator whose scaling index corresponds to the order of the fractional ...
متن کاملar X iv : m at h / 06 01 33 8 v 2 [ m at h . D S ] 1 3 A pr 2 00 6 HYPERBOLIC OUTER BILLIARDS : A FIRST EXAMPLE
We present the first example of a hyperbolic outer billiard. More precisely we construct a one parameter family of examples which in some sense correspond to the Bunimovich billiards.
متن کامل